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Abstract. We analyze admissibility and exactness of observation operators
arising in control theory for Volterra integral equations. We give a necessary

and sufficient criterion for an unbounded observation operator to map a solu-
tion into L2. We then discuss the Hautus Lemma, giving a partial result and

an example where it fails.

1. Introduction

We consider control theory for non-autonomous, infinite-dimensional, linear dy-
namical systems which arise from Volterra integral equations. It is the purpose
of this paper to characterize those observation operators which are admissible and
exact for such integral equations, thereby extending results from F. Callier and P.
Grabowski [1] and K.-J. Engel [2]. Classical theory for C0-Semigroups considers
the system

x′(t) = Ax(t) +Bu(t),
y(t) = Cx(t), t ≥ 0
x(0) = x0

(1.1)

where x is a function with values in the state space, u is a function with values in
the control space, A describes the internals of the system, B is the control operator,
and C is the observation operator.

We consider trivial B (B = 0) and non-trivial C, since here we are only interested
in the uncontrolled system. We first need the definition of a solution family corre-
sponding to a C0-Semigroup in the non-scalar Volterra Integral Equation case. Let
Y , X be Banach spaces, Y densely embedded in X and let A ∈ BVloc(IR+,B(Y,X)),
normalized by A(0) = 0 and left-continuity. Looking for solutions of

u′(t) =
∫ t

0

dA(t− s)u(s), t ≥ 0;u(0) = u0(1.2)

we define the solution family.

Definition 1.1. S : IR+ → B(X) is called the solution family to (1.2), if
(i) IR+ 3 t 7→ S(·)x ∈ X is continuous for x ∈ X and S(0) = I.
(ii) S(t)Y ⊂ Y for t ≥ 0 and IR+ 3 t 7→ S(·)y ∈ Y is continuous for y ∈ Y .
(iii) for all T > 0 holds S(·)y ∈ W 1.∞([0, T ], X), S′(t)y = (dA ∗ S)(t)y, and

S′(t)y = (S ∗ dA)(t)y for y ∈ Y and t ∈ (0, T ).
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We now consider the control problem in the Banach spaces Y and X with nor-
malized A ∈ BVloc(IR+,B(Y,X)):

u′(t) = (dA ∗ u)(t),
y(t) = Cu(t), t ≥ 0,
u(0) = u0.

(1.3)

The operator C : Y → Z is the observation operator, where Z is a third Banach
space, called the control space.

Let A ∈ BVloc(IR+,B(Y,X)), such that∫ ∞
0

e−εt‖dA(t)‖ <∞

for all ε > 0. A is then called exponentially stable. We then define the Laplace
transform L by

L(dA)(z) =
∫ ∞

0

e−ztdA(t), z ∈ CI+.(1.4)

Let e0(t) = 1 for t > 0, 0 for t ≤ 0. e0 is called the Heaviside function.

2. Admissibility

We are interested in showing a characterization of observability for Volterra in-
tegral equations, similar to the one proven for C0-Semigroups in [1] (for a simplified
version see [2]). We do not have the same methods at hand, but some theorems
remain valid. Notationally we let L2(IR+, X) = L2(X) for any Banach space X
and handle Sobolev spaces similarly.

Definition 2.1. The operator C is called an admissible observation operator, if
there exists a Γ > 0, such that∫ ∞

0

‖CS(t)y‖2Zdt ≤ Γ‖y‖2X

for all y ∈ Y .

The latter implies that X ⊃ Y 3 y 7→ CS(·)y ∈ L2(Z) is bounded. We define
Py = CS(·)y and remark that P : Y ⊂ X → L2(Z) is bounded if and only if C is
admissible.

We will consider an extended dynamical system. Define (Rtf)(x) = f(t−x) the
reflection operator, and Ttf(x) = f(x − t) the shift operator for any f : IR+ → X
(these image functions are trivially extended to IR+!) and x, t ≥ 0.

Xe = X × L2(Z),
Ye =

{
(y, f) ∈ Xe : y ∈ Y ; f ∈W 1,2(Z); f(0) = Cy

}
,

Ae(t)(y, f) = (A(t)y,−e0(t)f ′) for (y, f) ∈ Ye, t ≥ 0,

S̃e(t)(y, f) = (S(t)y,RtPy + Ttf) for (y, f) ∈ Ye, t ≥ 0.

Consider the thus extended problem in Xe:

ue
′(t) = (dAe ∗ ue)(t), t ≥ 0,

ue(0) = ue,0.
(2.1)

Using the fact that W 1,2
0 (Z) is dense in L2(Z) it is easy to see that Ye is dense in

Xe. We are now in a position to formulate the central proposition.
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Proposition 2.2. Assume that S is a bounded solution family to (1.2). Then (2.1)
admits a bounded solution family Se if and only if C is admissible.

Proof. We start with the if part. Since C is admissible, P is bounded and S̃e has a
continuous extension in Xe we call Se. We now prove that Se is indeed the bounded
solution family to (2.1) according to Definition 1.1.

It is obvious that Se is strongly continuous on Xe and that Se(0) = I. Therefore
(i) holds. Now, S is strongly continuous on Y and (RtPy + Ttf)(0) = CS(t)y. To
show (ii), Se(t)Ye ⊂ Ye and the strong continuity in Ye, it remains to show that
g : IR+ → W 1,2(Z), with g(t) := RtPy + Ttf for (y, f) ∈ Ye, t ≥ 0 is continuous.
Let t, h > 0.

h−1(RtPy + Ttf)(s+ h)− (RtPy + Ttf)(s)

= h−1

 CS(t− s− h)y − CS(t− s)y t ≥ s+ h,
f(s+ h− t)− CS(t− s)y s+ h > t ≥ s,
f(s+ h− t)− f(s− t) s > t.

Since f(0) = Cy this converges in the L2(Z)-norm as h → 0. But from this not
only g(t) ∈W 1,2(Z) follows, but IR+ 3 t 7→ g(t)′ ∈ L2(Z) is continuous, in fact

g(t)′ =
{
−(P ∗ dA)(t− s)y t > s,
f ′(s− t) t < s.

for almost all s > 0.

Therefore g is to continuous. We now prove (iii) in a similar fashion. We have

h−1((Rt+hPy + Tt+hf)(s)− (RtPy + Ttf)(s))

= h−1

 CS(t+ h− s)y − CS(t− s)y t > s,
CS(t− s)y − f(s− t) t+ h > s ≥ t,
f(s− t− h)− f(s− t) s ≥ t+ h,

which again shows convergence of h−1(Rt+hPy+Tt+hf −RtPy+Ttf) in L2(Z) as
h→ 0 to

dg(t)
dt

(s) =
{

(P ∗ dA)(t− s)y t > s,
−f ′(s− t) t < s.

Moreover, combining this with the structure of Se and the fact that S is a solution
family, we obtain the convergence of h−1(Se(t+ h))− Se(t))ue,0 to

((S ∗ dA)(t)y, (P ∗ dA)(t)y + Ttf
′) = (Se ∗ dAe)(t)ue,0

as h→ 0. (ue,0 = (y, f) ∈ Ye.) Immediately the two equations from (iii) follow for
Ae and Se. Finally, Se is bounded:

‖Se(t)ue,0‖ ≤ ‖S(t)‖ ‖y‖+ Γ‖y‖+ ‖f‖ ≤ (‖S(t)‖+ Γ + 1)‖ue,0‖,
since S is a bounded solution family to (1.2).

We turn to the only if part of the proposition. First note that

Se(t)(y, f) = (S(t)y, Fty + Ttf), (y, f) ∈ X × L2(Z),

where Ft : X → L2(Z) for t > 0 is bounded, say by M > 0. On the other
hand, S̃e(t) : Ye → Xe, can be differentiated in Xe for each ue,0 ∈ Ye and satisfies
S̃′e(t)ue,0 = (dAe ∗ S̃s)(t)ue,0. By uniqueness it follows that S̃e(t) ⊂ Se(t) and
consequently ∫ t

0

‖CS(t)y‖2ds = ‖RtPy‖22 = ‖Ftu‖22 ≤M‖y‖.
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The structure of Se can be exploited to yield the following theorem.

Theorem 2.3. Assume that A is exponentially stable the solution family S to (1.2)
is bounded. Then C is admissible if and only if there exists an M ≥ 0 such that for
all n ∈ IN and λ ∈ CI+ holds

‖
(
d

dλ

)n
e−λ ·C(λ− L(dA)(λ))−1y‖ ≤ Mn!

(<(λ))n
‖y‖

for y ∈ X in L2(Z) and for y ∈ Y in W 1,2(Z) (with norms in the corresponding
spaces).

Proof. By the Generation Theorem 6.3 [4] of J. Prüss, Se is a bounded solution
family, if and only if ‖(d/dλ)nλ−1(I−L(Ae)(λ))−1‖ ≤M0n!(<(λ))−n for all λ ∈ CI+

in B(Xe) and B(Ye). (We are a bit imprecise here: we need to take the closure of
the inverse in B(Xe)). Calculating the norm of the right hand side and using the
structure of Ae, we obtain its boundedness if and only if

‖
(
d

dλ

)n( (λ− L(dA)(λ))−1 0
Ce−λ ·(λ− L(dA)(λ))−1 e−λ ·∗

)(
y
f

)
‖

≤ Mn!
(<(λ))n

‖
(
y, f
)
‖.

in Xe and Ye. To obtain the claim, observe that the only term in the matrix whose
boundedness needs to be required is found in the lower left corner of the matrix.

Unfortunately we need estimates in two spaces, L2(Z) and W 1,2(Z), in contrast
to the C0-Semigroup case ([1], Theorem 2.3). See however [4] for situations, where
the second one may be omitted. A convenient necessary condition is given in

Corollary 2.4. Let S be a bounded solution family to (1.2). If C is admissible,
then there exists an M > 0. such that ‖Cλ(I − L(dA)(λ))−1‖ ≤ M(<(λ))−1/2 in
B(X,Z).

Proof. If we choose n = 0 in the Theorem 2.3, we obtain the stated formula.

3. Exactness

We first give the definition of exactness, guaranteeing invertibility of the closure
of P : X ⊃ Y 3 y → CS(·)y ∈ L2(Z). While the admissibility condition ensures
that all states are observable (and that P is closable), exactness ensures that all
states are distinctly observable. Recall Definition 1.1 for solution families.

Definition 3.1. The admissible control operator C is called an exact observation
operator, if there exists a γ > 0, such that∫ ∞

0

‖CS(t)y‖2Xdt ≥ γ‖y‖2X

for all y ∈ Y .

A general condition with respect to exactness for C0-Semigroups is given in [1].
Here we show that a “simple” criterion cannot hold for Volterra integral equa-
tions. The well-known Hautus lemma states, that in a finite dimensional setting
an operator C is exactly observable, if and only if for all x ∈ X and λ ∈ CI holds
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‖Ax− λx‖+ ‖Cx‖ > 0. We first prove that this is necessary, if A(t) = a(t)A (even
in the infinite-dimensional case) and then give a counter-example that it is not
sufficient. Note that a sufficient condition seems to be unknown (cf. D. Russell and
G. Weiss [5]) in the infinite-dimensional C0-Semigroup case, although a modified
condition is there conjectured to be equivalent to exactness.

The solution family S is called exponentially stable, if there exist M,ω > 0, such
that ‖S(t)‖ ≤Me−ωt for all t ≥ 0. Note the subtle difference between exponential
stability for functions in BVloc(IR+, X) and solution families.

Proposition 3.2. Let A(t) = a(t)A, where a ∈ BVloc(IR+) is exponentially stable
and the solution family S is exponentially stable. If C is admissible and exact, then

‖Cx‖+ ‖(λ−A)x‖ > 0(3.1)

for all x ∈ D(A) and λ ∈ CI.

Proof. Assume to the contrary that Cx = 0 and Ax = λx for some λ ∈ CI and
x ∈ D(A). Then S(t)x = sλ(t)x, where sλ solves the scalar equations sλ′ = λda∗sλ
and sλ(0) = 1 (cf. [4]). But then CS(t)x = sλ(t)Cx = 0 and C is not exact.

Note that the modified version of the Hautus Lemma of [5] is not easily adapted
from the C0-Semigroup case, since the L1- and L2-norms of the scalar functions
sµ(t) need not have the same growth bound with respect to µ as those of eµt. There
is not much hope that the same conditions are true for the time-independent and
the time-dependent situation. For a more detailed comparison in the case of control
operators see [3].

References

[1] F. M. Callier and P. Grabowski. Admissible observation operators. semigroup criteria of ad-
missibility. Integral Equations and Oper. Theory, 25:182–198, 1996.

[2] K.-J. Engel. On the characterization of admissible control- and observation operators. In
W. Arendt, W. Balser, W. Kratz, and U. Stadtmüller, editors, Ulmer Seminare, volume 1,
pages 134–137, Ulm, 1996. Universität Ulm.

[3] M. Jung. Admissibility of control operators for solution families to Volterra integral equations.
Preprint, 1997.

[4] J. Prüss. Evolutionary Integral Equations and Applications. Birkhäuser, Basel, 1993.
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